Stereospecific formation of polycyclic ferrocenyldihydropyrazoles based on Z- and E-isomeric ferrocenyl-substituted α,β -unsaturated ketones of the heterocyclic series

E. I. Klimova, ** T. Klimova, ** M. Martinez Garcia, ** E. A. Vazquez Lopez, ** C. Alvarez Toledano, ** R. Alfredo Toscano, ** and L. Ruiz Ramirez**

^aNational Autonomous University of Mexico, Department of Chemistry,*
C.P. 04510, Mexico D.F., Mexico.
Fax: (525) 622 5366. E-mail: klimova@servidor.unam.mx

^bNational Autonomous University of Mexico, Institute of Chemistry,**
C.P. 04510, Mexico D.F., Mexico.
Fax: (525) 616 2203

The reactions of E- and Z-isomeric 2-(ferrocenylmethylidene)quinuclidin-3-one, 1-methyl-3-(ferrocenylmethylidene)piperidin-4-one, and 2-(ferrocenylmethylidene)tropinone with hydrazine proceed stereospecifically to form the same diastereomeric polycyclic ferrocenyldihydropyrazoles regardless of the geometrical configuration of the starting α,β -unsaturated ketones. The structure of the *trans*-diastereomer of 4-acetyl-3-ferrocenyl-1,4,5-triazatricyclo[5.2.2.0^{2,6}]undec-5-ene was established by X-ray diffraction analysis.

Key words: ferrocene, dihydropyrazole, asymmetric induction, stereospecificity, X-ray diffraction analysis.

The ferrocenyl substituent in organic molecules can induce 'chiral plane—chiral center,' 'chiral center—chiral plane,' or 'chiral center—chiral center' asymmetry. 1–4

The stereochemical aspects of the synthesis of ferrocene-containing heterocyclic systems were studied based on a few examples. Thus, 1,1- and 1,3-asymmetric induction of a chiral center by a chiral plane or vice versa was observed⁵ in the synthesis of 4,5-dihydropyrazoles bearing the ferrocene and phenylbutadienyltricarbonyliron substituents at positions 3 and 5 of the heterocyclic system. It was mentioned that these reactions proceeded with high diastereomeric selectivity in different synthetic procedures. The high degree of 1,2-asymmetric induction of a chiral center by a chiral center was also observed^{6,7} in the synthesis of bicyclic ferrocenylpyrazolines starting from *E,E*-bis(ferrocenylmethylidene)cycloalkanones (Scheme 1).

Interest in the diastereoselective synthesis of biologically active heterocyclic compounds is associated with the requirements of pharmacology. Compounds of the ferrocene series also exhibit biological activities. It is known that ferrocenyl-substituted pyrazolines, cyclo-

Scheme 1

Fc
$$H$$
 MH_2NH_2 Ac_2O Fc H Fc H

 $Fc = C_5H_5FeC_5H_4$; $X = CH_2$, $CHBu^t$, N—Ph

propanes, cyclohexenes, tetrahydrophthalates, and ferrocenyl(alkyl)azoles possess antiinflammatory, $^{8-10}$ analgesic, $^{8-10}$ antiviral, 11 and antitumor 12 activities. The diastereomers of the same compound may differ in activity. The aim of the present work was to study the stereochemistry of formation of ferrocenyl-substituted dihydropyrazoles.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 857-861, May, 2001.

^{*} Universidad Nacional Autonoma de Mexico, Facultad de Quimica, Cd. Universitaria, Coyoacan, C.P. 04510, Mexico D.F.. Mexico.

^{**} Universidad Nacional Autonoma de Mexico, Instituto de Quimica, Cd. Universitaria, Coyoacan, C.P. 04510, Mexico D.F., Mexico.

Scheme 2

Results and Discussion

As part of continuing studies of dihydropyrazoles, we investigated 1,2-asymmetric induction of a chiral center by a chiral center in the synthesis of polycyclic ferrocenylpyrazoles 1—3:

We used α,β -unsaturated carbonyl compounds **4**—**6**, which were prepared by condensation of ferrocenyl-carbaldehyde with heterocyclic ketones in aqueous-alcoholic NaOH (Scheme 2), as the starting compounds.⁷

According to the data from ¹H NMR spectroscopy, chalcones **4a**—**6a** were formed as the only configurational isomers with the "external" arrangement of the bulky ferrocenyl substituent with respect to the *s-cis*-diene systems (*Z*-**4a**, *E*-**5a**, and *E*-**6a**).^{6,13,14} The geometrical isomers with the "internal" arrangement of the ferrocenyl group (*E*-**4b**, *Z*-**5b**, and *Z*-**6b**) were prepared by isomer-

ization of chalcones 4a-6a under the action of $HBF_4 \cdot Et_2O$ as described previously. ^{15,16}

N-Acetyldihydropyrazoles **1—3** were synthesized by acylation of 1-unsubstituted dihydropyrazoles **7a,b—9a,b**. The latter, in turn, were prepared by addition of hydrazine¹⁷ to α,β -unsaturated carbonyl compounds **4a,b—6a,b** (Scheme 3).

Scheme 3

4a-6a
$$NH_{2}NH_{2}\cdot H_{2}O$$

$$V$$

$$N-H \xrightarrow{Ac_{2}O} 1-3$$

$$7a,b-9a,b$$

$$CH_{2}$$

$$CH_{3}$$

are arbitrarily denoted as **7a-9a**, whereas compounds isolated from isomeric enones **4b-6b** are denoted as **7b-9b**.

Dry compounds **7a b-9a** be are rather stable and

Dry compounds **7a,b—9a,b** are rather stable and remain unchanged upon storage under normal conditions for ~1—1.5 months. Since these compounds rapidly decompose in solutions, they were not character-

ized by NMR spectra. However, the pairs of dihydropyrazoles **7a** and **7b**, **8a** and **8b**, and **9a** and **9b** have identical melting points, which is indirect evidence in favor of the identity of the structures denoted as **a** and **b**.

Actually, the ^{1}H and ^{13}C NMR spectral studies of stable *N*-acetyl-substituted dihydropyrazoles **1**—**3** confirmed the conclusion that these compounds exist exclusively as the only diastereomeric form regardless of the configurational structure of the initial α,β -unsaturated ketone as evidenced by the identity of the corresponding ^{1}H and ^{13}C NMR spectral parameters and the melting points of acetyl(ferrocenyl)dihydropyrazoles **1**—**3** synthesized from the *Z*- and *E*-isomeric chalcones (see the Experimental section).

The ¹H NMR spectra of compounds **1** and **2** have signals for the H(3) protons of the pyrazole fragments at δ 4.86 and 5.51 with ${}^3J_{\mathrm{H(3a),H(3)}}$ of 8.6 and 9.9 Hz, respectively. The signal for the analogous proton in compound **3** is observed at higher field (δ 4.76) and is characterized by the smaller spin-spin coupling constant (${}^3J_{\mathrm{H(3a),H(3)}} = 5.0$ Hz).

Ferrocenylmethylidene-substituted bicyclic dihydropyrazoles have been identified previously by ¹H NMR spectroscopy and X-ray diffraction analysis. ^{6,7} It has been demonstrated that the *trans* or *cis* orientations of the ferrocenylpyrazole fragments with respect to the H(3a) atom can be established from the chemical shifts and the spin-spin coupling constants for the H(3) protons (Fig. 1). Thus, the signals for the H(3) protons in the *trans* isomers are observed at lower field and are characterized by larger spin-spin coupling constants than

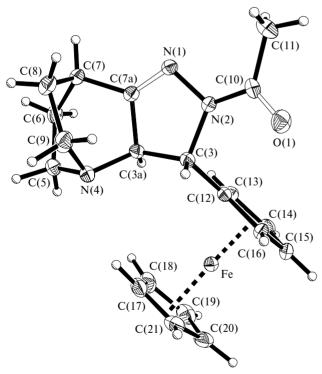


Fig. 1. Molecular structure of compound 1.

those in the *cis* isomers. Based on comparison of the ¹H NMR spectra of compounds **1**, **2**, and **3** with the spectra of the compounds identified previously, ^{6,7} the *trans* structures with the pseudoaxial orientations of the H(3a) and H(3) atoms and the pseudoequatorial position of the ferrocene fragment can be assigned to diastereomers **1** and **2**. In compound **3**, the H(3a) and H(3) protons are, apparently, in the *cis* orientation. However, the ¹H NMR spectral data for dihydropyrazole **3** (in the absence of the second diastereomer) did not allow us to unambiguously determine its spatial structure.

With the aim of establishing the structure of one of the ferrocenyldihydropyrazoles synthesized, we performed X-ray diffraction study of a single crystal of compound 1 prepared by crystallization from CHCl₃ (see Fig. 1, Tables 1 and 2).

The central tricyclic core is the key fragment of compound 1. The bicyclic system of quinuclidine is fused with the five-membered dihydropyrazole ring adopting a flattened envelope conformation. The ferrocenyl substituent has a pseudoequatorial orientation. The H(3a) and H(3) atoms at the C(3a) and C(3)atoms, respectively, are in the trans orientation. In the dihydropyrazole ring, the N(1)=C(7a) bond length (1.276 Å) is virtually identical to the analogous bond lengths in ferrocenyl-substituted pyrazolines (lit. data: $d(C=N) = 1.285 \text{ Å}^{5} \text{ and } 1.289 \text{ Å}^{18}), \text{ whereas the}$ N(1)-N(2) bond length (1.421 Å) is somewhat larger than the values found previously (lit. data: $d(N-N) = 1.392 \text{ Å}^{5} \text{ and } 1.387 \text{ Å}^{18}$). The C-C and C-N bond lengths in the quinuclidine fragment as well as the Fe-C and C-C bond lengths and the geometric parameters of the ferrocenyl group have standard values. 19

The conclusion that the hydrogen atoms at positions 3a and 3 of the pyrazole ring in compound 1 are in the *trans* orientations, which have been made previously based on the ¹H NMR spectral data, was confirmed by the results of X-ray diffraction analysis. Apparently, compound 2 has an analogous structure. The structure of pyrazole 3 remains to be established.

To summarize, the synthesis of ferrocenyldihydropyrazoles from Z- and E-isomeric s-cis-fused enones proceeds stereospecifically to give the same diastereo-

Table 1. Principal bond lengths (d) and bond angles (ω) in the structure of compound 1

Bond	$d/\mathrm{\AA}$	Angle	ω/deg
N(1)—N(2)	1.421(4)	C(7a)-N(1)-N(2)	106.7(3)
N(1)-C(7a)	1.276(4)	N(1)-N(2)-C(3)	112.0(2)
C(3a)-C(7a)	1.500(4)	N(2)-C(3)-C(3a)	100.6(2)
N(2)-C(3)	1.508(4)	N(4)-C(3a)-C(7a)	108.2(3)
C(3)-C(3a)	1.529(4)	C(3a)-N(4)-C(5)	105.1(3)
C(3a) - N(4)	1.479(4)	C(9)-N(4)-C(5)	107.3(3)
N(4) - C(5)	1.481(5)	C(7a) - C(7) - C(8)	103.3(3)
N(4) - C(9)	1.494(5)	N(1)-C(7a)-C(3a)	115.8(3)
C(5) - C(6)	1.540(6)	C(7a) - C(3a) - C(3)	103.0(3)
C(3) - C(12)	1.506(5)	. , . , . , . ,	` /

Table 2. Crystallographic data and details of X-ray diffraction analysis of compound 1

Parameters	Characteristic	
Molecular formula	$C_{20}H_{23}FeN_3O$	
Molecular weight/g mol ⁻¹	377.26	
T/K	293	
Crystal system	Orthorhombic	
Space group	Pbca	
a/Å	18.174(3)	
b/Å	9.034(1)	
c/Å	20.853(2)	
α/deg	90.0	
β/deg	90.0	
γ/deg	90.0	
"//Å ³	3423.7(8)	
\acute{Z}	8	
$d_{\rm calc}/{\rm g~cm}^{-3}$	1.464	
Absorption	0.894	
coefficient/mm ⁻¹		
F(000)	1584	
Radiation, λ/Å	Mo-Kα, 0.71073	
Monochromator	Graphite	
θ/2θ scanning	1.50-25.00	
range/deg		
Number of reflections	3845	
Number of independent	3012	
reflections		
R _{int}	0.0434	
Number of parameters	296	
in the refinement		
Goodness-of-fit	1.023	
	(full-matrix least-squares	
	based on F^2)	
Residual electron	-0.327/0.441	
density/e · Å ⁻³ , ρ_{min}/ρ_{max}	,	
Weighting scheme	$w^{-1} = \sigma^2(F_0^2) + (0.0735P)^2$	
	where $P = (F_0^2 + 2Fc^2)/3$	

meric products regardless of the configuration of the starting α -ferrocenylmethylidene-substituted ketone of the heterocyclic series.

Experimental

The ¹H and ¹³C NMR spectra were recorded on a Varian Unity Inova spectrometer (300 and 75 MHz, respectively) in CDCl₃ with SiMe₄ as the internal standard. Column chromatography was carried out with the use of Al₂O₃ (Brockmann III).

The unit cell parameters and the intensities of reflections were measured on a Siemens P4/PC diffractometer at 293 K.

Ferrocenylcarbaldehyde (98%), quinuclidin-3-one hydrochloride (99%), tropinone (99%), and 1-methyl-4-piperidone (97%) were purchased from Aldrich; HBF $_4$ · Et $_2$ O (50—52%) was purchased from Alfa AESAR. Dichloromethane was dried by washing successively with concentrated H $_2$ SO $_4$, H $_2$ O, a 10% solution of NaOH, and H $_2$ O, dried over calcinated K $_2$ CO $_3$, and distilled over 4 Å molecular sieves.

Z-2-(Ferrocenylmethylidene)quinuclidin-3-one (4a) was prepared according to a standard procedure¹¹ from ferrocenylcarbaldehyde and quinuclidin-3-one hydrochloride in aqueous-

alcoholic alkali as dark-red crystals in 76% yield, m.p. 122–123 °C (lit. data: 11 m.p. 122–123 °C).

E-3-(Ferrocenylmethylidene)-1-methylpiperidin-4-one (5a). Ferrocenylcarbaldehyde (2.14 g, 10 mmol) and 1-methylpiperidin-4-one (2.0 mL) were added to a solution of NaOH (1.0 g) in water (20 mL) and EtOH (20 mL). The reaction mixture was stirred at 20 °C for 24 h and then mixed with benzene (100 mL). The organic layer was separated from the aqueous layer and then washed with water. The solvent was distilled off *in vacuo*. The residue was chromatographed on Al₂O₃ (a 3:1 hexane—benzene mixture as the eluent). Compound 5a and 3,5-bis(ferrocenylmethylidene)-1-methylpiperidin-4-one (10) were obtained in yields of 1.98 g (64%) and 0.5 g (21%), respectively.

Compound **5a** was obtained as red-violet crystals, m.p. 117—118 °C. Found (%): C, 65.88; H, 6.11; Fe, 18.17; N, 4.39. $C_{17}H_{19}FeNO$. Calculated (%): C, 66.04; H, 6.19; Fe, 18.06; N, 4.53. ¹H NMR, δ : 2.49 (s, 3 H, Me); 2.60 (t, 2 H, CH₂, J = 6.0 Hz); 2.78 (t, 2 H, CH₂, J = 6.0 Hz); 3.49 (d, 2 H, CH₂, J = 2.0 Hz); 4.16 (s, 5 H, C_5H_5); 4.18 (m, 2 H, C_5H_4); 4.45 (m, 2 H, C_5H_4); 7.46 (t, 1 H, CH=, J = 2.0 Hz). ¹³C NMR, δ : 38.8 (Me); 46.3, 52.5, 57.7 (3 CH₂); 69.5 (C_5H_5); 71.2, 71.4 (C_5H_4); 78.6 (C_{ipsoFc}); 128.5 (CH=); 129.6 (C); 198.4 (C=O).

Compound 10 was obtained as violet crystals, m.p. 197-198 °C (lit. data: 20 m.p. 197-198 °C).

E-2-(Ferrocenylmethylidene)-8-azabicyclo[3.2.1]octan-3-one (6a) was synthesized analogously from ferrocenylcarbaldehyde (2.14 g) and tropinone (2.19 g, 15 mmol). The mixture was treated as described above and chromatographed on Al_2O_3 (a 3 : 1 hexane—CHCl₃ mixture as the eluent) to obtain monochalcone 6a and 2,7-bis(ferrocenylmethylidene)-8-azabicyclo[3.2.4]octan-3-one (11) in yields of 2.02 g (60%) and 0.51 g (23%), respectively.

Compound **6a** was obtained as violet crystals, m.p. 110-111 °C. Found (%): C, 67.93; H, 6.44; Fe, 16.71; N, 4.07. C₁₉H₂₁FeNO. Calculated (%): C, 68.07; H, 6.32; Fe, 16.66; N, 4.18. ¹H NMR, δ : 2.49 (s, 3 H, HMe); 2.60 (t, 2 H, CH₂, J = 6.0 Hz); 2.78 (t, 2 H, CH₂, J = 6.0 Hz); 3.49 (d, 2 H, CH₂, J = 2.0 Hz); 4.16 (s, 5 H, C₅H₅); 4.18 (m, 2 H, C₅H₄); 4.45 (m, 2 H, C₅H₄); 7.46 (t, 1 H, CH=, J = 2.0 Hz).

Compound 11 was obtained as red crystals, m.p. 235-236 °C. Found (%): C, 67.68; H, 5.73; Fe, 20.93; N, 2.48. $C_{30}H_{29}Fe_2NO$. Calculated (%): C, 67.82; H, 5.50; Fe, 21.02; N, 2.65. ¹H NMR, δ : 1.86 (m, 2 H, CH₂); 2.39 (s, 3 H, Me); 2.54 (m, 2 H, CH₂); 4.19 (s, 10 H, 2 C₅H₅); 4.38 (m, 2 H, 2 CH); 4.44 (m, 2 H, 2 CH); 4.49 (m, 4 H, 2 H, 2 CH); 4.49 (m, 4 H, 2 CH); 4.49 (m, 4 H, 4 C₅H₄); 4.59 (m, 4 H, 4 C₅H₄); 4.59 (m); 4.59 (m);

E-2-(Ferrocenylmethylidene)quinuclidin-3-one (4b). A mixture of chalcone 4a (0.96 g, 3 mmol) and HBF₄· Et₂O (1 mL) in anhydrous CH₂Cl₂ (100 mL) was stirred under an atmosphere of dry argon at 30–33 °C for 6 h. Then the reaction mixture was cooled to ~20 °C and washed with a 5% aqueous solution of Na₂CO₃. The organic layer was separated and dried with Na₂SO₄. The solvent was distilled off and the residue was chromatographed on Al₂O₃. The starting compound 4a (hexane as the eluent) was obtained in a yield of 0.11 g (11%), m.p. 121-123 °C; ¹¹ *E* isomer 4b (benzene as the eluent) was obtained as violet crystals in a yield of 0.75 g (75%), m.p. 114-115 °C (lit. data: ¹⁵ m.p. 113-114 °C).

Z-3-(Ferrocenylmethylidene)-1-methylpiperidin-4-one (5b) was prepared by isomerization of E isomer **5a** (1.5 g, 5 mmol) under the action of $HBF_4 \cdot Et_2O$ as described above. Chroma-

tography afforded the starting compound **5a** in a yield of 0.6 g (40%), m.p. 116—117 °C, and *Z* isomer **5b** (a 2 : 1 hexane—benzene mixture as the eluent) as violet crystals in a yield of 0.66 g (44%), m.p. 103—104 °C. Found (%): C, 66.16; H, 6.03; Fe, 17.93; N, 4.65. $C_{17}H_{19}FeNO$. Calculated (%): C, 66.04; H, 6.19; Fe, 18.06; N, 4.53. ¹H NMR, δ : 2.46 (s, 3 H, Me); 2.73 (t, 2 H, CH₂, J = 5.8 Hz); 2.94 (t, 2 H, CH₂, J = 5.8 Hz); 3.69 (d, 2 H, CH₂, J = 1.6 Hz); 4.19 (s, 5 H, $C_{5}H_{5}$); 4.21 (m, 2 H, $C_{5}H_{4}$); 4.78 (m, 2 H, $C_{5}H_{4}$); 7.35 (t, 1 H, CH=, J = 1.6 Hz).

Z-2-(Ferrocenylmethylidene)-8-azabicyclo[3.2.1]octan-3-one (6b) was prepared by isomerization of chalcone **6a** (1.67 g, 5 mmol) as described above. After the corresponding workup and chromatography (a 2 : 1 hexane—benzene mixture as the eluent), the starting compound **6a** was isolated in a yield of 0.4 g (24%), m.p. 110—111 °C, and *Z* isomer **6b** was obtained as violet crystals in a yield of 1.04 g (62%), m.p. 98—99 °C. Found (%): C, 68.19; H, 6.16; Fe, 16.83; N, 4.25. $C_{19}H_{21}FeNO$. Calculated (%): C, 68.07; H, 6.32; Fe, 16.66; N, 4.18. ¹H NMR, δ : 1.87 (m, 2 H, CH₂); 2.34 (s, 3 H, Me); 2.57 (m, 2 H, CH₂); 3.41 (m, 2 H, CH₂); 4.15 (s, 5 H, C_5H_5); 4.27 (m, 2 H, CH); 4.42 (m, 2 H, C_5H_4); 4.60 (m, 2 H, C_5H_4); 7.30 (s, 1 H, CH=).

3-Ferrocenyl-1,4,5-triazatricyclo[5.2.2.0^{2,6}]undec-5-ene (7). $N_2H_4 \cdot H_2O$ (5 mL) was added to a solution of compound Z-4a (1.07 g, 3.3 mmol) in 95% EtOH (40 mL). The reaction mixture was stirred at ~70 °C for 3 h and then cooled. The yellow crystals that formed were filtered off, washed with aqueous EtOH, and dried over P_4O_{10} . Dihydropyrazole 7a was obtained in a yield of 0.80 g (72%), m.p. 263—265 °C (lit. data: 11 m.p. 263—265 °C).

Pyrazole **7b** was obtained analogously from chalcone E-**4b** (1.07 g) as yellow crystals in a yield of 0.84 g (76%), m.p. 264-265 °C.

9-Ferrocenyl-3-methyl-3,7,8-triazabicyclo[4.3.0]non-6-ene (8) Analogously, compound **8a** was prepared from chalcone *E*-**5a** (1.03 g, 3.3 mmol) as a yellow powder in a yield of 0.81 g (75%), m.p. 188—190 °C.

Pyrazole **8b** was obtained from Z-**5b** (1.03 g) in a yield of 0.75 g (70%), m.p. 187—189 °C.

6-Ferrocenyl-11-methyl-4,5,11-triazatricyclo[6.2.1.0^{3,7}]**undec-3-ene (9).** Compound **9a** was prepared from chalcone *E*-**6a** (1.11 g, 3.3 mmol) as a yellow powder in a yield of 0.83 g (71%), m.p. 239—241 °C.

Analogously, pyrazole **9b** was obtained from Z-**6b** (1.11 g) in a yield 0.84 g (73%), m.p. 240—241 °C.

N-Acetyldihydropyrazoles 1–3 were synthesized according to a standard procedure. ¹⁷ Dry dihydropyrazoles (**7a**, **8a**, **9a**, **7b**, **8b**, and **9b**) (3.3 mmol) were dissolved in Ac_2O (2 mL) and the reaction mixtures were treated with a 5% solution of Na_2CO_3 . The yellow crystals that precipitated were filtered off, washed with aqueous EtOH, and dried over P_4O_{10} .

4-Acetyl-3-ferrocenyl-1,4,5-triazatricyclo[5.2.2.0^{2,6}]undec-5-ene (1). Compound **1** was prepared from dihydropyrazole **7a** (1.12 g, 3.3 mmol) in a yield of 0.88 g (70%), m.p. 201 °C (from 95% EtOH; lit. data: ¹¹ m.p. 200—201 °C.) Acetyldihydropyrazole **1** was prepared analogously from dihydropyrazole **7b** (1.12 g) in a yield of 0.91 g (72%), m.p. 201 °C. Found (%): C, 63.56; H, 6.27; Fe, 14.99; N, 11.05. $C_{20}H_{23}FeN_3O$. Calculated (%): C, 63.67; H, 6.15; Fe, 14.81; N, 11.13. ¹H NMR, δ: 1.97 (m, 4 H, 2 CH₂); 2.25 (s, 3 H, Me); 2.85 (m, 2 H, CH₂); 3.07 (m, 2 H, CH₂); 3.29 (m, 1 H, CH); 4.26 (s, 5 H, C₅H₃); 4.05 (m, 1 H, C₅H₄); 4.16 (m, 2 H, C₅H₄); 4.46 (m, 1 H, C₅H₄); 4.36 (d, 1 H, CH, J = 8.6 Hz); 4.86 (d, 1 H, CH, J = 8.6 Hz); 13C NMR, δ: 22.6 (Me); 28.4

(CH₂); 35.5 (CH₂); 43.3 (CH₂); 48.5 (CH₂); 58.9, 65.7, 67.7 (3 CH); 68.3 (C_5H_5); 68.1, 68.3, 68.3, 71.8 (C_5H_4); 87.0 (C_{ipsoFc}); 167.3 (C=N); 170.7 (C=O).

8-Acetyl-9-ferrocenyl-3-methyl-3,7,8-triazabicyc-lo[4.3.0]non-6-ene (2). Compound **2** was obtained from dihydropyrazole **8a** (1.08 g) in a yield of 0.92 g (75%), m.p. 135—136 °C (from 95% EtOH). Found (%): C, 62.57; H, 6.17; Fe, 15.41; N, 11.28. $C_{19}H_{23}FeN_3O$. Calculated (%): C, 62.48; H, 6.35; Fe, 15.30; N, 11.50. ¹H NMR, δ : 1.80 (m, 1 H, CH₂); 2.17 (m, 1 H, CH₂); 2.21 (s, 3 H, Me); 2.36 (s, 3 H, Me); 2.49 (m, 1 H, CH₂); 3.20 (m, 1 H, CH₂); 3.31 (m, 1 H, CH₂); 3.20 (m, 1 H, C₅H₄); 3.36 (m, 1 H, C₅H₄); 4.13 (m, 2 H, C₅H₄); 5.51 (d, 1 H, CH, J = 9.9 Hz). ¹³C NMR, δ : 22.1 (Me); 27.1 (Me); 45.7 (CH₂); 48.8 (CH₂); 53.7 (CH₂); 56.1, 56.3 (2 CH); 69.4 (C₅H₅); 65.3, 65.8, 67.0, 67.6 (C₅H₄); 86.2 (C_{ipsoFc}); 159.0 (C=N); 168.2 (C=O).

Compound **2** was prepared analogously from dihydropyrazole **8b** (1.08 g) in a yield of 0.87 g (71%), m.p. 135–136 °C. ¹H NMR, δ : 1.78 (m, 1 H, CH₂); 2.16 (m, 1 H, CH₂); 2.23 (s, 3 H, Me); 2.35 (s, 3 H, Me); 2.50 (m, 1 H, CH₂); 2.67 (m, 1 H, CH₂); 2.88 (m, 1 H, CH₂); 3.20 (m, 1 H, CH₂); 3.29 (m, 1 H, CH); 4.23 (s, 5 H, C₅H₅); 3.83 (m, 1 H, C₅H₄); 3.95 (m, 1 H, C₅H₄); 4.13 (m, 2 H, C₅H₄); 5.50 (d, 1 H, CH, J = 10.0 Hz).

5-Acetyl-6-ferrocenyl-11-methyl-4,5,11-triazatricyclo[6.2.1.0^{3,7}]undec-3-ene (3). Compound 3 was prepared from dihydropyrazole 9a (1.15 g) in a yield of 0.90 g (69%), m.p. 114-115 °C (from benzene). Found (%): C, 64.59; H, 6.27; Fe, 14.38; N, 10.68. C₂₁H₂₅FeN₃O. Calculated (%): C, 64.46; H, 6.44; Fe, 14.27; N, 10.73. ¹H NMR, δ: 1.44 (m, 1 H, CH₂); 1.59 (m, 1 H, CH₂); 1.98 (m, 1 H, CH₂); 2.10 (m, 1 H, CH₂); 2.23 (s, 3 H, Me); 2.34 (dd, 1 H, CH_2 , J = 2.4 and 13.2 Hz); 2.51 (s, 3 H, Me); 2.79 (dd, 1 H, CH_2 , J = 3.6 and 13.2 Hz); 3.41 (dd, 1 H, CH₂, J = 3.6 and 6.0 Hz); 3.51 (t, 1 H, CH, J = 3.6 Hz); 3.75 (t, 1 H, CH, J = 5.0 Hz); 4.17 (s, 5 H, C_5H_5); 4.02 (m, 1 H, C_5H_4); 4.15 (m, 2 H, C_5H_4); 4.41 (m, 1 H, C_5H_4); 4.76 (d, 1 H, CH, J = 5.0 Hz). ¹³C NMR, δ : 22.2 (Me); 23.2 (Me); 26.9 (CH₂); 34.6 (CH₂); 39.2 (CH₂); 57.1, 58.7, 62.7, 66.0 (4 CH); 68.2 (C₅H₅); 66.2, 68.0, 68.2, 70.3 (C_5H_4) ; 87.7 (C_{ipsoFc}) ; 157.1 (C=N); 168.7 (C=O).

Acetylpyrazole **3** was prepared analogously from dihydropyrazole **9b** (1.15 g) in a yield of 0.91 g (70%), m.p. 114-115 °C. 1 H NMR, δ : 1.42 (m, 1 H, CH₂); 1.60 (m, 1 H, CH₂); 1.99 (m, 1 H, CH₂); 2.12 (m, 1 H, CH₂); 2.23 (s, 3 H, Me); 2.32 (dd, 1 H, CH₂, J = 2.3 and 13.3 Hz); 2.50 (s, 3 H, Me); 2.81 (dd, 1 H, CH₂, J = 3.7 and 13.3 Hz); 3.41 (dd, 1 H, CH₂, J = 3.7 and 6.0 Hz); 3.50 (t, 1 H, CH, J = 3.6 Hz); 3.77 (t, 1 H, CH, J = 5.1 Hz); 4.17 (s, 5 H, C₅H₅); 4.03 (m, 1 H, C₅H₄); 4.15 (m, 2 H, C₅H₄); 4.42 (m, 1 H, C₅H₄); 4.77 (d, 1 H, CH, J = 5.1 Hz).

We thank H. Rioz for measuring the NMR spectra. This work was financially supported by the General Direction of Academic Personnel of the National Autonomous University of Mexico (DGAPA-UNAM; Grant IN203599).

References

1. V. I. Sokolov, Vvedenie v teoreticheskuyu stereokhimiyu [Introduction to Theoretical Stereochemistry], Nauka, Moscow, 1979, 243 pp. (in Russian).

- 2. T. Hayashi, Pure Appl. Chem., 1998, 60, 7.
- 3. M. Sawamura and Y. Ito, Chem. Rev., 1992, 92, 857.
- 4. J. Spencer, V. Cramlich, R. Hausel, and A. Togni, *Tetrahedron Asymmetry*, 1996, 7, 41.
- V. N. Postnov, V. G. Andrianov, Yu. T. Struchkov, A. M. Baran, and V. A. Sazonova, J. Organomet. Chem., 1984, 262, 201.
- E. I. Klimova, M. Martinez Garcia, T. Klimova-Berestneva,
 L. Ruiz Ramirez, C. Alvarez Toledano, and R. A. Toscano,
 Izv. Akad. Nauk, Ser. Khim., 1999, 765 [Russ. Chem. Bull.,
 1999, 48, 761 (Engl. Transl.)].
- E. I. Klimova, M. Martinez Garcia, T. Klimova-Berestneva,
 C. Alvarez Toledano, R. A. Toskano, and L. Ruiz Ramirez,
 J. Organomet. Chem., 1999, 585, 106.
- E. I. Klimova, V. N. Postnov, N. N. Meleshonkova, A. S. Zaks, and V. V. Yushkov, *Khim.-farm. Zh.*, 1992, 26, 69 [*Pharm. Chem. J.*, 1992, 26 (Engl. Transl.)].
- E. I. Klimova, V. N. Postnov, N. N. Meleshonkova, A. S. Zaks, and E. M. Chukichev, *Khim.-farm. Zh.*, 1992, 26, 34 [*Pharm. Chem. J.*, 1992, 26 (Engl. Transl.)].
- E. I. Klimova, V. N. Postnov, N. N. Meleshonkova, M. Martinez Garcia, and A. S. Zaks, *Khim.-farm. Zh.*, 1994, 28, 33 [*Pharm. Chem. J.*, 1994, 28 (Engl. Transl.)].
- E. I. Klimova, L. Ruiz Ramirez, M. Martinez Garcia, R. G. Espinosa, and N. N. Meleshonkova, *Izv. Akad. Nauk,* Ser. Khim., 1996, 2743 [Russ. Chem. Bull., 1996, 45, 2602 (Engl. Transl.)].
- L. V. Snegur, V. I. Boev, Yu. S. Nekrasov, M. M. Ilyin,
 V. A. Davankov, Z. A. Starikova, A. I. Yanovsky, A. F.

- Kolomiets, and V. N. Babin, *J. Organomet. Chem.*, 1999, **580**, 26.
- V. N. Postnov, E. I. Klimova, M. Martinez Garcia, N. N. Meleshonkova, V. V. Rybakov, and L. A. Aslanov, J. Organomet. Chem., 1994, 476, 189.
- E. J. Warawa and J. R. Campbell, J. Org. Chem., 1974, 39, 3511.
- E. I. Klimova, L. Ruiz Ramirez, T. Klimova, and M. Martinez Garcia, J. Organomet. Chem., 1998, 559, 43.
- E. I. Klimova, T. Klimova, M. Martinez Garcia, and N. N. Meleshonkova, *Mendeleev Commun.*, 1997, 233.
- A. N. Nesmeyanov, V. N. Postnov, E. I. Klimova, and V. A. Sazonova, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1979, 239 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1979, 28 (Engl. Transl.)].
- V. G. Andrianov, Yu. T. Struchkov, V. N. Postnov, E. I. Klimova, and V. A. Sazonova, J. Organomet. Chem., 1984, 272, 81.
- 19. Structure Correlation, Eds. H.-B. Bürgi and J. D. Dunitz, VCH, Weinheim—New York, 1994, 2.
- E. I. Klimova, M. Martinez Garcia, T. Klimova, L. Ruiz Ramirez, J. M. Mendez Stivalet, and N. N. Meleshonkova, *Izv. Akad. Nauk, Ser. Khim.*, 2000, 511 [Russ. Chem. Bull., Int. Ed., 2000, 49, 514].

Received June 27, 2000; in revised form November 20, 2000